SIT330-770: Natural Language
Processing

Week 7 - Transformers and Pretrained
LMs

Dr. Mohamed Reda Bouadjenek

School of Information Technology, Faculty of
Sci Eng & Built Env

Y
reda) nek@deakin edu. DEAKIN

UNIVERSITY

Deep Learning Models for NLP so far...

(wordavec)

 Layeredstructure
o True targets vs

© Weightsand loss

« Optimizers

SIT330-770: Natural
Language Processing

Week 7.1 - Introduction to
Transformers

g

ANCFRRMERS

Dr. Mohamed Reda Bouadjenek Z

'SE OF / THE| BEASTS
School of Information Technology, | : i
Faculty of Sci Eng & Built Env

A

'S

The LLMs Mountain!

By Chris McCormick

(Bldiectional Encoder Representations from Transformers)

If “Attention Is All You Need”.

Transformer

(attention w/o LSTM) .can we start here,

LSTM + Attention

Encoder-Decoder

instead of here?

Problem/Motivation

* Encoder-decoder models have largely used RNN and LSTM, but the
computation is sequential
© RNN experiences vanishing gradient
© Both are slow to train, even with factorization and conditional computation

+ ConvS2S uses CNN to compute representations in parallel
o Computation scales linearly with distance between positions

* Transformer provides constant computation and uses Multi-headed
Attention to negate reduced effectiveness

[es.CL] 6 Dec 2017

Attention Is All You Need

Adhis Vosvani' NoamShaeer' NikiPamar® Jakob Usshorec
AvasAniOgoople con mowmGgoegle-con niIPORooEle.con uesegeogls.com

Lion Jons”

Abstract

4/3/25

mailto:reda.bouadjenek@deakin.edu.au

Encoder-Decoder

AshishVaswani et. Attention Is All You Need.
NIPS 2017.

Encoder-Decoder

Figure by: Jay Alammar
[The liustrated Transformer

An Encoder Block: same structure, different parameters

Figure by: Jay Alammar
The lllustrated Transformer

Feed Forward Neural Network

Self-Attention

Figure by: Jay Alammar \
The lllustrated Transformer NCODER \\ J/}
’ ; T
i
Y
. (7
fecd Forward
Note: The FFNN is independent
for eachword.
Hence can be parallelized. o
+
el Atention
N T T
. < [[
Thinking Machines

Transformers vs. LSTM

Like the LSTMs, transformers can handle distant

But unlike LSTMs, transformers are not based on recurrent
connections

Transformers are made up of stacks of transformer blocks, each
of which is a multilayer network made by combining:

o simple linear layers

o feedforward networks

o self-attention layers

Self-attention allows a network to directly extract and use
information from arbitrarily large contexts without the need to

pass it through intermediate recurrent connections as in RNNs

Attention Ts Al You Need

10

11

SIT330-770: Natural
Language Processing
Week 7.2 — Self-Attention

Mechanism
Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

'SE OF /THE!{ BEA

S\
S TSy

4/3/25

http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/

4/3/25

Self-Attention Mechanism Relevance scores from each input to output
N - ™ Scaled Dot-Product Attention
* All-to-all comparison. = - ; §§ ! § N * Q: Query (output token)
o e . § H i
o Each layeris 0(N?) for sequence of length N - self attention. - cactbE ba bl i 1IN 8 E By query[17] # “making” * K: Key (input token)
* Every output is a weighted sum of every input. A AN \ .
S ——] b X
-) i N + Relevance = softmax(%
© The weighting is a function to learn. —t N k
SRREE SR AT IR A FRLEERRNS] sthe dimensi
. . . ’ ’ . ’ =% g Egzﬁ*—_ug % zggi § Key[24] # “difficult” o dy is the dimension of Q or K
H X
N S * V:Value (input token)
4 * Out = Relevance xV
00000OGO Relevance[17,24]=query[17] * key[24]
relevance of difficult to making
Gef attention(self, X_in:List[Tensor]):
Attention in “pseudo-code” For’h nTangecoe1t sequence Tenghiy: S Multi-Headed Attention (i)
query[i] = self.Q * X_in[i]
key[1] 16K * X_in[i]
value[i] = self.v * X_in[i]
def attention(self, X_in:List[Tensor]): + Compute output valuee, one at 4 tine + Clever, important innovation.
. for 1 in range(self.sequence_lenght): © Not that hard.
For every token transform previous layer’s out this_query = query[1]

for i in range(self.sequence_lenght): oy e

For § in rang(self.sequence_lenght)

s each input to this output?

* Just do that same thing 8 times with different Q,K,V matrices.

ght) : Scaled Dot-Product Atteation * Let the network learn 8 different semantic meanings of
relevance[§] - this_query * key[3]
query[i] = self.Q * X_in[i] # normalize relevance score to sun to 1 = attention.
. oy i relevance - scaled_sof tuax(relevance) o E.g., One grammar, one for vocabulary, one for conjugation, etc.
key[i] = self.K * X_in[i] Sl ot Pkt Acion # compute 3 weighted sun of values G
— outli] ot v — o Very flexible mechanism for sequence processing.
value[i] = self.V * X_in[i] for § in rang(self.sequence_lenght):
out[i] += relevance[3] * value[3] Y Q=XWE; K=XWK; V=XW/ 017
return out () head; = SelfAttention(Q,K,V) (10.18)
oy A = MultiHeadAtiention(X) = (head; & head;... & headi) W (10.19)

17 18

Multi-Headed Attention (ii)

mxl (B & &)

Project from
hd, tod WO [ud, xdl
Concatenate [head output val | head output val | head3 output val | headd output va
Outputs Nxdyl INxa,) Nxdyl Nxd)
INxhd, T
Wo WK W, Headd
Multihead
Attention Layer
with h=4 heads

Nxa (F 3

mxa (88 8 2]
e o o o e e o e s o i 5 v
Y20 Sy vl g e, Th cops o ok fh e &1 Gonnad s

. ; el
ot b

General attention versus self-attention

| attention

DERKIY

[self-attention

(TR [Le]lvTw]] [

%%

19

The Encoder Transformer Block

* The Encoder Transformer block

includes four kinds of layers:

o A self-attention layer

K
Residual
connecton| (28 = _Fee!

o Afeedforward layer

Residual connections

o Normalizing layers

Rescua
comecion| (ST

20

The Encoder Transformer Block: Residual

* Residual connections enable information
to bypass intermediate layers, facilitating
improved learning and direct access to
lower layer information.

In Transformers, residual connections
involve adding a layer's input vector to its

output vector before forwarding it.

connection

Residual
connection| (2 B Feed®

Residual

SIT330-770: Natural
Language Processing

Week 7.3—The Encoder
Transformer Block

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

The Encoder Transformer Block: Layer Normalization

* Layer Normalization Process:

EERES Swr
* Learnable Parameters:

normalization implementation.

LayerNorm = y X+

ANSFPR
'SE OF /THE

BEAS

\¢

o\
TSQ‘Q:

2= =K
o

Transiormer
Block

=

o] BT

deviation, yielding a new vector with zero mean and unit standard deviation.

* Introduces two learnable parameters, y (gain) and B (offset), in standard layer

(@68 &)
* Calculates mean () and standard deviation (o) over vector elements for normalization.

* Normalizes vector components by subtracting mean and dividing by standard

22

23

24

4/3/25

The Encoder Transformer Block: feedforward layer

+ The feedforward layer consists of N position-wise

networks, each positioned independently.

« Each network is a fully-connected 2-layer neural network,

comprising one hidden layer and two weight matrices.

* While the weights remain consistent across positions,

the parameters differ from layer to layer. O O O
* Unlike attention mechanisms, the feedforward ~ E
networks operate independently at each position, \/ . : O = B :
enabling parallel computation. O S O
[— IR EYe——

The Encoder Transformer Block: Putting it all together

DERKIY

* The Transformer block includes four kinds of

layers: ‘ (= Z_Layer Normaiize hl
© Aself-attention layer | Y 3 :
o Residual connections esoual | [Feedova] |
© Normalizing layers |]
o Afeedforwardlayer | [EEmrr =
SelfAttention(X) | o !
X+T! | ‘connection| !
Ty = LayerNorm(T?) : :
T = FEN(TY) B
TS =TT

H = LayerNorm(T®)

Encoder-Decoder Transformers

Ashish Vaswani et. Attention Is All You Need.
NIPS 2017.

Kl nputs Outputs
- (onied rgy

25

SIT330-770: Natural
Language Processing
Week 7.4 —The Input: Embeddings

for Tokens
ANSEY P

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

'SE OF THE{ BEAS

26

* Source of Input X:
* Originates from a sequence of N tokens, where N represents the number of tokens in
the context.
* Matrix X has dimensions [Nxd] where d is the dimension of each embedding.
* Composition of Embeddings:

* The transformer model computes two separate embeddings:
* Input Token Embedding: Specific to each token in the sequence.

* Input Positional Embedding: Reflects the position of each token within the sequence.

27

Input Token Embedding

* Each token's initial representation is a vector of dimension d.

+ Embedding Storage:
© Stored in matrix E with shape [V|xd], where |V is the vocabulary size.
* Token Conversion and Indexing:
o Tokens first converted to vocabulary indices using techniques like BPE or SentencePiece (discussed in
Week 3).
© Example: “thanks for all” converts to indices [5, 4000, 10532, 2224].
© These indices are used to fetch the corresponding embeddings from E.

* These embeddings evolve through transformer layers, incorporating contextual nuances.

29

30

4/3/25

One-Hot Vector

+ One-Hot Vector Representation:
o Alternative method using one-hot vectors of size V.
© Example: Word "thanks" represented as a vector where only the s5th position is 1, all others are o.
0006006160 ...0000]
1234567 V|
* Multiplying by a one-hot vector that has only one non-zero element xi = 1 simply selects

out the relevant row vector for word i, resulting in the embedding for word i,

Sclecting the erbedding vectr for word Vs by mulilying the cmbedding
5 matix E with s one-hot vectorwith a1 in index 5.

One-Hot Vector

* We can extend this idea to represent the entire token sequence as a matrix of onehot

vectors, one for each of the N positions in the transformer’s context window,

DERKIY

L d
R x |g| -
N i »

[EPERIOEY Selccting the embedding malrix for the input sequence of (oken ids W by
‘multiplying a one-hot matrix corresponding to W by the embedding matrix E.

31

Input Positional Embedding

* How does a transformer model the position of each token in the input
sequence?
o With RNNs, information about the order of the inputs was built into the structure of
the model, Not with Transformers
* Solution: Positional
© Embeddings Modify the input embeddings by combining them with positional

embeddings specific to each position in an input sequence

32

Positional Embedding

* Positional encoding assigns a unique representation to each position within a
sequence to describe the location or order of entities.
* Limitations of Using Single Numbers for Position:
© Using index values alone (e.g., sequence position numbers) is problematic for several reasons:
© Large indices for long sequences can grow unmanageably large.

o indices bet

positional information.

« Transformers' Approach to Positional Encoding:
o Instead of single numbers, transformers map each position to a unique vector.
o This results in a matrix where each row represents an object in the sequence combined with its

dacreatesinc q f different lengths.

4/3/25

SIT330-770: Natural
Language Processing
Week 7.5 —The Input: Embeddings [

for Positions ; X
ANSFYY RN e

'SE OF / THE BEASTS{‘Q
School of Information Technology, ¥

Faculty of Sci Eng & Built Env -

Dr. Mohamed Reda Bouadjenek

Positional encoding

* Desiderata of pos(.) :

self-attention

It should output a unique encoding for each
time-step (word's position in a sentence)

Distance between any two time-steps should
be consistent across sentences with different

lengths
Our model should generalize to longer

+ Concatenate/add special positional encoding prto
sentences without any efforts. Its values

should be bounded

It must be deterministic.

eachinput vectorx,
* Weuse a function pos: N —Rd to process the position
j of the vector into a d-dimensional vector

+ 50,pj=pos()

~

34

35

36

Positional Encoding Layer in Transformers

o k: Position of an object in the input sequence,
5 d: Dimension of the output embedding space
o n: User-defined scalar, set to 10,000 by the authors of Attention Is All You Need.

* Example:

5 “lam a robot,” with n=100 and d=4

o

Lo Pues) P

for the s

« The positional encoding is given by sine and cosine functions of varying frequencies:

P(k,2) = sin(

P2+ 1) = cos(

P Pascos) | Passn) | Pascost)

v —

Coding the Positional Encoding Matrix from Scratch

DERKIY

inport numpy s np

inport matplotlib.pyplot as plt

def getPositionEncoding (seq_len, d, n=10000):
P = np.zeros((seq_len, d))
for k in range(seq_len):
for 1 in np.arange(int(d/2)):
denominator = np.power(n, 2%i/d)
Plk, 2*i] = np.sin(k/denominator)
Plk, 2*i+1] = np.cos(k/denominator)
return P

P = getPositionEncoding(seq_len=4, d=4, n=108)

print(P) Ae 1 o6 1
2 [0.84147098 0.54030231 0.09983342 0.99500417)

» 3 [0.90929743 -0.41614684 0.19866933 0.98006658]
e 4014112001 -0.9899925_0.29552021 0.95533649)]

Positional Embeddings

(Transformer Block)
X = Composite 2]
Embeddings L4 $ 9
(word + position)
® » <+? 2
Word \ |
Embeddings]
Position E]

Embeddings
Janet will back the bill

37

SIT330-770: Natural
Language Processing
Week 7.6 —The Task Specific Head

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

38

The Language Modeling Head

* The Language Modeling Head is an additional neural circuitry integrated
with the basic transformer architecture.

* It enables specific tasks such as language modeling by enhancing the
transformer's capabilities.

* Given a context of words, a Language Model assigns a probability to each
possible next word
© Calculating the probability of the next word “fish” given the context “Thanks for all

the": P(fish|Thanks for all the)

The Language Modeling Head

G G2 .. G Wordprobabiies 1x

~
Language Model Head Softmax over vocabulary V
takes hly and outputs a i U Logits 1xM

Unembedding o
LN? o Unembedding layer x|
=)

wi) (e [

[EESERRE] The language modeling head: he circut a the top of & ransformer hat maps from the output
cmbedding for token N from the last transformer layer () to a probability distibution over words in the

vocabulary V.

4/3/25

The Classification Head

% Sigmoid function

BERT architecture

* Transformers is an Encoder-Decoder architecture

o Atransformer uses Encoder stack to model input, and
uses Decoder stack to model output (using input
information from encoder side).

* BERT

o If we are only interested in training a language model for

the input for some other tasks, then we do not need the

Decoder of the transformer, that gives us BERT.

BERT

Ecooen

Encooen

SIT330-770: Natural r '
Language Processing . N
Week 7.7—BERT: Bidirectional - \

Encoder Representations from
Transformers ‘

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env.

44

Model architecture

* Two models with different sizes were investigated

© BERTsase : L=12, H=768, A=12, Total Parameters=110M

2 Encoper

© BERTLarcE: L=24, H=1024, A=16, Total Parameters=340M

© L: number of layers (Transformer blocks), H: the hidden size, A:

the number of self-attention heads. ” Fcooet

o Cased and uncased versions. encooer
© Multiple-languages. 2

o Also available: BERTriny , BERTwini, BERTsmal, BERTwedium 1

Encoper

Encoper

BERTu BERTuc:

Bidirectional Transformer Encoders

+ The focus of bidirectional encoders is on computing contextualized representations of the tokens in an
input sequence that are generally useful across a range of downstream applications

ARLEANEEEE

2) A causal A layer

[EFTIRIN () The causal, backward looking, transformer model we saw in Chapter 10, Each output is
 others using only the context. (b)

a bidirectional self-attention model. In processing each element of the sequence, the model attends to all inputs,

both before and after the current one.

BERT in Action

46

47

4/3/25

4/3/25

Input Representation BERT's Vocabulary Differences in pre-training model architectures: BERT, OpenAl

GPT, and ELMo

- O

OpenAl GPT ELMo

* BERT is pre-trained < Vocabulary is fixed

ol o] B el o] The vocabulary contains 30,522 tokens. .

(N IS e N)
T T~ G~
——
]y Cel

- -+ + + -
b eSO N | A A A A [S [How to deal with unknown words?
- . - - -
 Break down unknown words into subwords:
[&]E] (&)

o Using the wordpiece model

#
Posilon
Embeddings.

- Token Embeddings: Use pretrained WordPiece embeddings.

I*
3*
3
P
3 =
3 o
X + =l
< * g
s 3
3 g 3
3
e
3
#
=

+ Segment Embeddings (Optional): Added sentence embedding to every tokens of each sentence. + Asubword exists for every character.) _+ GPTisbuilt using transformer decoder blocks. BERT, on
* Position Embeddings: Use learned Position Embeddings. © 2 types of subwords [[==]| theother hand, usestransformer encoder blocks.

+ Use [CLS] for the classification tasks. o All subwords start with “##"... * GPTisauto-regressive in nature. BERT is not

+ Separate sentences by using a special token [SEP]. & Except for the first subword in a word -) 2 Inlosing auto-regression, BERT gained the abilty to

incarporate the context on bath sides of a word ta gain

better results.

Pre-trained Models Pre-training and Fine-tuning

SIT330-770: Natural

Language PI’OCGSSIHQ y * Pre-trained models are ML models that have been previously trained on a large dataset,
Week 7.8 — BERT pre-training j typically on a general task
i * These models can significantly reduce the computational cost and time required to
develop ML applications by leveraging learned features and weights.

" © Speeds Up Development P =
B et i B © By using models that are already trained, developers can focus on fine-tuning rather than starting from scratch. N emsessennenwasrae Custon Ao P _4
© Improves Performance Preraining Fine-Tuning
Sl Gl e A T ey, © Pre-trained models often bring high levels of accuracy and efficiency, especially on complex tasks that require learning
Faculty of Sci Eng & Built Env from large amounts of data -l dded n front of every
- Resource Efficiency + Pre-trainings two tasks are considered

© Saves resources by reducing the need for extensive training data and computational power.

4/3/25

Pre-training

Pre-training
Task#1: Masked Language Model (MLM)

Pre-training
Taski#1: Masked

1)
uage Model (MLM) DEAKIN Task#1: Masked Language Model (MLM)

long

|
* The original approach to training bidirectional encoders is called Masked Language Modeling * The MLM training objective is to predict the original inputs for each of the masked tokens Cetos Sz
. T . - y Softmaxover
(MLM) using a bidirectional encoder of the kind described in the last section Vocabulary
© MLM uses unannotated text from a large corpus © The cross-entropy loss from these predictions drives the training process for all the parameters in the I IR
© Modelis presented with a series of sentences from the training corpus, where a random sample of tokens model
. . Bidiractonal Transfomer Encoder
f:)m each training sequence is selected for use in the learning task. Once chosen, a token is used in one of & Note that al the input tokens play a role in the self-attention process, but only the sampled tokens are
three ways:
d for learni
© Itis replaced with the unique vocabulary token [MASK] vsedioriearning Toen + 3 88 B8
© Its replaced with another token from the vocabulary, randomly sampled based on token unigram probabilties * Input: Empadangs e 5
So [masd ad [asd fr &l sncot fsh
© Itis left unchanged © Original input sequence s first tokenized using a subword model et [W] = . = 6 e

* In BERT, 25% of the input tokens in a training sequence are sampled for learning

o The sampled items which drive the learning process are chosen from among the set of tokenized inputs
 Word embeddings for all the tokens in the input are retrieved from the word embedding matrix and then

‘Masked angusge model rining. T this xample, tree of the input tokens are elected, two of
‘which are masked and the third s replaced with an unrelated word, The probabliies asigned by the model to
these thee items are used s the taining loss. The other 5 words don't play arol i training loss. (n this and

! ; . subscquent igures w dislay the it a words rather than subword tokens: the reader should kep in mid
combined with positional embeddings to form the input to the transformer e e i i e e s s

o Of these, 8obare replaced with [MASK], 10% are replaced with randornly selected tokens, and the remaining

10%are left unchanged

55 56 57

Pre-training

Pre-training
Task#2: Next Sentence Predi

Pre-training
Task#2: Next Sentence Prediction (NSP)

Task#2: Next Sentence Prediction (NSP)

+ Animportant class of applications involves determining the relationship between pairs of « In BERT, 50% of the training pairs consisted of positive pairs, and in the other 50%
sentences the second sentence of a pair was randomly selected from elsewhere in the corpus
o paraphrase detection (detecting if two sentences have similar meanings)

© The NSP loss is based on how well the model can distinguish true pairs from random pairs
entailment (detecting if the meanings of two sentences entail or contradict each other)

o discourse coherence (deciding if two neighboring sentences form a coherent discourse) + BERT introduces two new tokens to the input representation 1 1 1 ' ' 1 1 1

* To capture the kind of knowledge required for applications such as these, BERT © After tokenizing the input with the subword model, the token [CLS] is prepended to the input T o
introduced a second learning objective called Next Sentence Prediction (NSP) sentence pair, and the token [SEP] is placed between the sentences and after the final token of

* Training: The model is presented with pairs of sentences and is asked to predict whether the second sentence s é m.@é @_é E“ﬂ& @_ é *é &é @é
each pair consists of an actual pair of adjacent sentences from the training corpus or a © During training, the output vector from the final layer associated with the [CLS] token e S vy o9y w Po% PP% - = P20
pair of unrelated sentences represents the next sentence prediction e o M e B

OFTERER An example of the NSP loss calculation.

58 59 60

10

Pre-training procedure

* Training data: BooksCorpus (8ooM words) + English Wikipedia (2.5B words).
* To generate each training input sequences: sample two spans of text (A and
B) from the corpus.
© The combined length is < 500 tokens.
© 50% B is the actual next sentence that follows A and 50% of the time it is a random
sentence from the corpus.
* The training loss is the sum of the mean masked LM likelihood and the mean
next sentence prediction likelihood.

Under the Hood
A Defition
porameters Number of lamabe varisbesialues

availabl fo the mode!

Number o Transformer blocks. A ransformer
block transforms a sequence of word
representations (o a sequence of
contextualzed words (numbered
representations)

Transtormer
Layers

Layers of mathematicalfunctons.located
HddenSize betueen the input and outpu, that assign
welghts (1o words) to produce a desied result

Atenton Heads The size of a Transformer block Trarstormer
Type of processing unit used o train the
Processing mogel BeRbse 12
fonamat me took o rain the mode = 2%
| T Tim it fook o trai the model

BERT Size & Architecture

T0M Parameters

[T —

768 2 THom

we e o

00 Parameters =

Processng Loaghof
g

atPus ag

BT g

Fine-tuning procedure 1: Classification

* For sequence-level classification task -
Cove

© Obtain the representation of the input sequence by
using the final hidden state (hidden state at the
position of the special token [CLS]) C € RH
o Just add a classification layer and use softmax to
calculate label probabilities. Parameters W € RKXH
P = softmax(CWT)

‘Single Sentence

62

Fine-tuning procedure 2: Sentence Pair Classification

* For sentence pair classification task

© Sentences are separated with a a special token [SEP]

© Obtain the representation of the input sequence by
using the final hidden state (hidden state at the position
of the special token [CLS]) € € R

© Justadd a classification layer and use softmax to
calculate label probabilities. Parameters W € R¥*H

P = softmax(CW ")

cass
Lavel

Sentence |

SIT330-770: Natural
Language Processing
Week 7.9 — BERT fine-tuning

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

Fine-tuning procedure 3: Named Entity Recognition

« Feed the final hidden representation T; € RH for each

token i into a classification layer for the tagset.
* To make the task compatible with WordPiece

tokenization

© Predict the tag for the first sub-token of a word

o No prediction is made for X

##son was a puppet fer
I-PER I-PER X [0 x

o

BPER - o

Single Sentence

64

4/3/25

11

Fine-tuning procedure 4: Query Answering 1/2

* Input Question:

Where do water droplets collide with ice crystals to form
precipitation?
* Input Paragraph:

... Precil

itation forms as smaller dropletscoalesce via collision

with other rain dropsor ice crystals within a cloud. ...

+ Output Answer:

29 =

StarvEnd Span

5]

Fine-tuning procedure 4: Query Answering 2/2

* Represent the input question and paragraph as a single packed

sequence. StarEnd Span
© The question uses the A embedding and the paragraph uses the B
embedding.
+ New parameters to be learned in fine-tuning are start vector,
s € R" and end vector E € R".

+ Calculate the probability of word & being the start of the

answer span:

2P OE0-§

Pgare = Softmax(STT)and P,,q = Softmax(ETT)

Guesion Parsgraph Question Paragrapn
within a cloud + The training objective is the log-likelihood the correct and end
positions.
* GLUE (General Language Understanding Evaluation) benchmark
.+ Distribute canonical Train, Dev and Test splits System MNLI(m/mm) QQP QNLI SST2 CoLA STS-B MRPC RTE Average
> Labels for Test set are not provided 392k 363k 108k 67k 85k 57k 35k 25k -
- Datasets in GLUE: Pre-OpenAl SOTA| 80.6/80.1 661 823 932 350 810 860 617 740
+ MNLI: Mul-Genre Natural Language Inference BILSTM+ELMo+Attn 76.4/76.1 648 798 904 360 733 849 568 710
. QQP- Quors Question Pairs OpenAl GPT 82.1/814 703 874 913 454 800 823 560 751
BERTaase 84.6/83.4 712 905 935 521 858 889 664 796
> QNLI:Question Natural Language Inference
BERTLARGE 86.7/85.9 721 927 949 605 865 893 700 821

> §5T-2: Stanford Sentiment Treebank
> CoLA:The corpus of Linguistic Acceptability

> ST5-8:The Semantic Textual Similarity Benchmark
> MRPC: Microsoft Research Paraphrase Corpus

> RTE: Recognizing Textual Entailment

> WNLEWinograd NLI

Table 1: GLUE Test results, scored by the evaluation server (nttps : //gluebenchmark..con/leaderboard).
‘The number below each task denotes the number of training examples. The “Average” column s slightly different
than the official GLUE score, since we exclude the problematic WNLI set.¥ BERT and OpenAI GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

SIT330-770: Natural
Language Processing
Week 7.10 — BERT Performance

]

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

SQUAD: The Stanford Question Answering Dataset

System Dev Test
EM FI_EM FI
“Top Leaderboard Systems (Dec 10h, 2018)

Human 823 912

#1 Ensemble - nlnet - - 860 917

#2 Ensemble - QANet - - s o0s
Published

BIDAF+ELMo (Single) - 856 - 858

RM. Reader (Ensemble) 812 879 823 885

Ours
BERTaast (Single) 808 885 - -

BERT, sxor, (Ens +TAviaQA) 862 922

Table 2: SQUAD 1.1 results. The BERT ensemble
is 7x systems which use different pre-training check-
points and fine-tuning seeds.

System
“Top Leaderboard Systems (Dec 10th,
juman 863 890 869 895
#1 Single -MIR-MRC (FNe) - - 748 780
#2 Single - nlnet B 742 711
Published
unet (Ensemble) - T4 749
SLQA (Single) 714 744

Ours
BERTyaxce (Single) 787 819 800 831

Table 3: SQUAD 2.0 results. We exclude entries that

use BERT as one of their componeats.

70

4/3/25

12

* The Situations with Adversarial Generations (SWAG)

On stage, a woman takes a seat at the piano. ESIM+ELMo

a) sits on a bench as her sister plays with the

doll.

System Dev_Test
ESIM+Glove 519 27
OpenAl GPT 780
BERTyase 816

BERTyance 866 863
Human (expery’ - 50
Human (5 amotations)’ - 88.0

‘Table 4: SWAG Dev and Test accuracies. Human per
formance is measured with 100 samples, as reported i
the SWAG paper.

b) smiles with someone as the music plays.
c) is in the crowd, watching the dancers.

nervously sets her fingers on the keys.

2

adopted in many NLP tasks.

architecture from Transformer.

« The only task-specific parameters is a vector V € R¥
* The probability distribution is the softmax over the four choices

« Cannot do everything in NLP!

© Advance state-of-the-art for many important NLP tasks.

* Unsupervised pre-training (pre-training language model) is increasingly

© Google Search is applying BERT models for search queries for over 70 languages.

* Major contribution of the paper is to propose a deep bidirectional

SIT330-770: Natural
Language Processing

Week 7.11— Other Models Based
on Transformers

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

73

Sentence-BERT: Sentence Embeddings using Siamese BERT-
Networks

* Amodification of the pretrained

BERT network that use Siamese
network structures to derive
semantically meaningful sentence
embeddings that can be compared
using cosine-similarity

© https://www.sbert.net/

BiEncoder Cross-Encoder

o] [] [m::;q

=

74

BERT-based Models

* RoBERTa: Robustly Optimized BERT Approach
> Facebook Al research team
> They used 160 GB of text instead of the 16 GB dataset

originally used to train BERT

> Increased the number of iterations from 100K to 300K

and then further to 500K

> Dynamically changing the masking pattern applied to

the training data

> Removing the next sequence prediction objective

from the training procedure

* ALBERT, XLNET, ColBERT

Generative Pre-trained Transformer (GPT)

GPT (Generative Pre-trained Transformer) is a series of language generation models developed

by OpenAl These models are based on the Transformer architecture (2018)

* GPT-2 (Generative Pre-trained Transformer 2) was the second model in the GPT series, released in
2019. It was trained on a large corpus of internet text and was designed for language generation
tasks such as question answering, and text summarization

+ GPT-3 (Generative Pre-trained Transformer 3) Released in 2020, with over 175 billion parameters,
and was trained on a much larger and diverse dataset, including web pages, books, and scientific
articles

* GPT-4 (Generative Pre-trained Transformer 4) Released in 2023, a multimodal model which can

acceptimage and text inputs and produce text outputs

76

77

4/3/25

13

Zero-shot, One-shot and Few-shot, Contrasted with Traditional
Fine-tuning

Traditional fine uning (rot used for GPT3)
[r—.

Themodstswine v epestd et pdtes sing s "
g cousof rample s

EFSEREI v asguege odss e
FewSnotLeamers ST
-

&)

Text-to-Text Transfer Transformer (T5)

s yuoing sell.-

s grozing n o field.

i poople Rospitalizes ariar

+ Adiagram of the text-to-text framework (Ts)
« Every task, including translation, question answering, and classification, is cast as feeding
Tsmodel text as input and training it to generate some target text

79

HuggingFace

P e—— ean @ cowrere G s
o™ @ speechocin g oo @ commy

Problems solvers

+ HuggingFace has a course on NLP: https:/Jhuggingface.cofcourse/chaptero/1?fw=pt 35
https://huggingface.co/

80

Documentations and Tutorials

* There is a wide range of examples provided, here are some useful links:

© Notebooks:

o, il

o

© Models:
© https:/lhuggingface.co/models
© Course:
© https:/Jhuggingface.cojcourse/chapterofa?fw=pt

SIT330-770: Natural
Language Processing
Week 7.12 — HuggingFace

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

Getting Started

* Use pip for the installation, which is the package manager for Python. In notebooks, you
can run system commands by preceding them with the ! character, so you can install the
@ Transformers library as follows:

Ipip install transformers
* You can make sure the package was correctly installed by importing it within your Python

runtime:

import transformers

82

83

4/3/25

14

https://huggingface.co/transformers/v3.0.2/notebooks.html

Pipelines

DRAN

* The pipelines are a great and easy way to use models for inference

* These pipelines are objects that abstract most of the complex code from the library,
offering a simple API dedicated to several tasks, including Named Entity Recognition,
Masked Language Modeling, Sentiment Analysis, Feature Extraction and Question

Answering

Example (1): Sentiment Analysis

rom transformers inport pipeline

Classifiar = pipeline(*sentinent-snslysis”)
Classifien("I've baen waiting for 3 HuggingFace course my wnole 1ife.”)

Mo model was supplied, defaulted to distilbert-base-uncased-Finetuned-sst-2-english and revision afofosh
Using a pipeline without specifying a model name and revision in production is ot recomended.

Jeme—— 5@
Douioading: 832um5]
Ooumioadng: e
Douioac oone)

[{'2abe1": "POSITIVE', 'score’: 0.9598049521446228}]

Classifien(
["I've been waiting for a HuggingFace course my whole life.”,
"I hate this so muchi”]

)

6.9538049521445228),,

[{*1abel’s "POSITIVE®, "score’
0.9934558691978455}]

{"label': "NEGATIVE', 'scor

Example (2): Question Answering

from transformers import pipeline

question_answerer = pipeline(“question-answering"”)
question_answerer(

question="Where do I work?",

context="My name is Sylvain and I work at Hugging Face in Brooklyn",

{'score': 0.6949767470359802, 'start": 33, 'end": 45, ‘answer': 'Hugging Face'}

from transformers import pipeline

"deepset/ quad2”)

{'score’: ©.9190717935562134, 'start': 34, 'end’: 48, 'answer': 'Berlin'}

EAKIN

85

HAT HAVE
you LEA

D7

86

* Today we learned about:

o Transformers

o Attention is All you need
o BERT

87

4/3/25

15

