
4/3/25

1

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Dr. Mohamed Reda Bouadjenek

School of Information Technology, Faculty of
Sci Eng & Built Env

reda.bouadjenek@deakin.edu.au

SIT330-770: Natural Language
Processing

Week 7 - Transformers and Pretrained
LMs

1

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Week 7.1 – Introduction to
Transformers

SIT330-770: Natural
Language Processing

2

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

2

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

3

The LLMs Mountain!
By Chris McCormick
(Bidirectional Encoder Representations from Transformers)

LLMs

3

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Deep Learning Models for NLP so far…

4

Neural Networks

Word to representation
(word2vec)

● Layered structure
● True targets vs

output predictions
● Weights and loss

functions
● Optimizers

RNN

Language Generation

Encoder-Decoder

Translation

Attention Models

Translation

4

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Encoder-decoder models have largely used RNN and LSTM, but the
computation is sequential
o RNN experiences vanishing gradient

o Both are slow to train, even with factorization and conditional computation

• ConvS2S uses CNN to compute representations in parallel
o Computation scales linearly with distance between positions

• Transformer provides constant computation and uses Multi-headed
Attention to negate reduced effectiveness

Problem/Motivation

5

5

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

6

6

mailto:reda.bouadjenek@deakin.edu.au

4/3/25

2

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Encoder-Decoder

7

Ashish Vaswani et. Attention Is All You Need.
NIPS 2017.

7

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Encoder-Decoder

8

Figure by: Jay Alammar
The Illustrated Transformer
http://jalammar.github.io/illustrated-transformer/

8

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

An Encoder Block: same structure, different parameters

9

Figure by: Jay Alammar
The Illustrated Transformer
http://jalammar.github.io/illustrated-transformer/

9

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Encoder

10

Note: The FFNN is independent
for each word.
Hence can be parallelized.

Figure by: Jay Alammar
The Illustrated Transformer
http://jalammar.github.io/illustrated-transformer/

10

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Like the LSTMs, transformers can handle distant information

• But unlike LSTMs, transformers are not based on recurrent

connections

• Transformers are made up of stacks of transformer blocks, each

of which is a multilayer network made by combining:
o simple linear layers
o feedforward networks

o self-attention layers

• Self-attention allows a network to directly extract and use

information from arbitrarily large contexts without the need to

pass it through intermediate recurrent connections as in RNNs

Transformers vs. LSTM

11

11

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Week 7.2 – Self-Attention
Mechanism

SIT330-770: Natural
Language Processing

12

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

12

http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/

4/3/25

3

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• All-to-all comparison.

o Each layer is 𝑂(𝑁!) for sequence of length N - self attention.

• Every output is a weighted sum of every input.

o The weighting is a function to learn.

Self-Attention Mechanism

13

13

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Relevance scores from each input to output

14

query[17] # “making”

key[24] # “difficult”

Relevance[17,24]=query[17] * key[24]
relevance of difficult to making

14

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Q: Query (output token)

• K: Key (input token)

• Relevance = softmax("×$
%&

)

o 𝑑' is the dimension of Q or K

• V: Value (input token)

• Out = Relevance x V

Attention

15

15

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

def attention(self, X_in:List[Tensor]):

 # For every token transform previous layer’s out

 for i in range(self.sequence_lenght):

 query[i] = self.Q * X_in[i]

 key[i] = self.K * X_in[i]
 value[i] = self.V * X_in[i]

Attention in “pseudo-code”

16

16

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

17

def attention(self, X_in:List[Tensor]):
 # For every token transform previous layer’s out
 for i in range(self.sequence_lenght):
 query[i] = self.Q * X_in[i]
 key[i] = self.K * X_in[i]
 value[i] = self.V * X_in[i]

Compute output values, one at a time

 for i in range(self.sequence_lenght):

 this_query = query[i]

 # how relevance is each input to this output?

 for j in rang(self.sequence_lenght):
 relevance[j] = this_query * key[j]

 # normalize relevance score to sum to 1

 relevance = scaled_softmax(relevance)

 # compute a weighted sum of values

 out[i] = 0 # out[i] is a vector

 for j in rang(self.sequence_lenght):

 out[i] += relevance[j] * value[j]

 return out

17

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Clever, important innovation.

o Not that hard.

• Just do that same thing 8 times with different Q,K,V matrices.

• Let the network learn 8 different semantic meanings of

attention.
o E.g., One grammar, one for vocabulary, one for conjugation, etc.

o Very flexible mechanism for sequence processing.

Multi-Headed Attention (i)

18

18

4/3/25

4

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Multi-Headed Attention (ii)

19

19

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

General attention versus self-attention

20

20

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Week 7.3 – The Encoder
Transformer Block

SIT330-770: Natural
Language Processing

21

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

21

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• The Encoder Transformer block

includes four kinds of layers:

o A self-attention layer

o A feedforward layer

o Residual connections

o Normalizing layers

The Encoder Transformer Block

22

22

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Residual connections enable information

to bypass intermediate layers, facilitating

improved learning and direct access to
lower layer information.

• In Transformers, residual connections

involve adding a layer's input vector to its

output vector before forwarding it.

The Encoder Transformer Block: Residual connection

23

23

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Layer Normalization Process:
• Calculates mean (µ) and standard deviation (σ) over vector elements for normalization.

• Normalizes vector components by subtracting mean and dividing by standard

deviation, yielding a new vector with zero mean and unit standard deviation.

• Learnable Parameters:
• Introduces two learnable parameters, γ (gain) and β (offset), in standard layer

normalization implementation.

The Encoder Transformer Block: Layer Normalization

24

24

4/3/25

5

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• The feedforward layer consists of N position-wise

networks, each positioned independently.
• Each network is a fully-connected 2-layer neural network,

comprising one hidden layer and two weight matrices.

• While the weights remain consistent across positions,

the parameters differ from layer to layer.

• Unlike attention mechanisms, the feedforward

networks operate independently at each position,

enabling parallel computation.

The Encoder Transformer Block: feedforward layer

25

25

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• The Transformer block includes four kinds of

layers:

o A self-attention layer

o Residual connections

o Normalizing layers

o A feedforward layer

The Encoder Transformer Block: Putting it all together

26

26

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Encoder-Decoder Transformers

27

Ashish Vaswani et. Attention Is All You Need.
NIPS 2017.

27

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Week 7.4 – The Input: Embeddings
for Tokens

SIT330-770: Natural
Language Processing

28

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

28

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Source of Input 𝑋:
• Originates from a sequence of 𝑁 tokens, where 𝑁 represents the number of tokens in

the context.

• Matrix 𝑋 has dimensions [𝑁×𝑑] where 𝑑 is the dimension of each embedding.

• Composition of Embeddings:
• The transformer model computes two separate embeddings:

• Input Token Embedding: Specific to each token in the sequence.

• Input Positional Embedding: Reflects the position of each token within the sequence.

The input 𝑋

29

29

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Each token's initial representation is a vector of dimension 𝑑.

• These embeddings evolve through transformer layers, incorporating contextual nuances.

• Embedding Storage:
o Stored in matrix 𝐸 with shape [∣𝑉∣×𝑑], where ∣𝑉∣ is the vocabulary size.

• Token Conversion and Indexing:
o Tokens first converted to vocabulary indices using techniques like BPE or SentencePiece (discussed in

Week 3).

o Example: “thanks for all” converts to indices [5, 4000, 10532, 2224].

o These indices are used to fetch the corresponding embeddings from 𝐸.

Input Token Embedding

30

30

4/3/25

6

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• One-Hot Vector Representation:

o Alternative method using one-hot vectors of size ∣𝑉∣.

o Example: Word "thanks" represented as a vector where only the 5th position is 1, all others are 0.

• Multiplying by a one-hot vector that has only one non-zero element xi = 1 simply selects

out the relevant row vector for word i, resulting in the embedding for word i,

One-Hot Vector

31

31

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• We can extend this idea to represent the entire token sequence as a matrix of onehot

vectors, one for each of the N positions in the transformer’s context window,

One-Hot Vector

32

32

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Week 7.5 – The Input: Embeddings
for Positions

SIT330-770: Natural
Language Processing

33

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

33

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• How does a transformer model the position of each token in the input

sequence?

o With RNNs, information about the order of the inputs was built into the structure of

the model, Not with Transformers

• Solution: Positional

o Embeddings Modify the input embeddings by combining them with positional

embeddings specific to each position in an input sequence

Input Positional Embedding

34

34

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Positional encoding assigns a unique representation to each position within a

sequence to describe the location or order of entities.

• Limitations of Using Single Numbers for Position:
o Using index values alone (e.g., sequence position numbers) is problematic for several reasons:

o Large indices for long sequences can grow unmanageably large.
o Normalizing indices between 0 and 1 creates inconsistencies across sequences of different lengths.

• Transformers' Approach to Positional Encoding:
o Instead of single numbers, transformers map each position to a unique vector.

o This results in a matrix where each row represents an object in the sequence combined with its

positional information.

Positional Embedding

35

35

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Concatenate/add special positional encoding pj to

each input vector xj
• We use a function pos: N →Rd to process the position

j of the vector into a d-dimensional vector
• So, pj = pos(j)

Positional encoding

36

• Desiderata of pos(.) :
1. It should output a unique encoding for each

time-step (word’s position in a sentence)

2. Distance between any two time-steps should
be consistent across sentences with different

lengths.

3. Our model should generalize to longer

sentences without any efforts. Its values
should be bounded.

4. It must be deterministic.

36

4/3/25

7

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• The positional encoding is given by sine and cosine functions of varying frequencies:

o k: Position of an object in the input sequence,

o d: Dimension of the output embedding space

o n: User-defined scalar, set to 10,000 by the authors of Attention Is All You Need.

• Example:

o “I am a robot,” with n=100 and d=4

Positional Encoding Layer in Transformers

37

37

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

import numpy as np

import matplotlib.pyplot as plt

def getPositionEncoding (seq_len, d, n=10000):

 P = np.zeros((seq_len, d))

 for k in range(seq_len):

 for i in np.arange(int(d/2)):

 denominator = np.power(n, 2*i/d)

 P[k, 2*i] = np.sin(k/denominator)
 P[k, 2*i+1] = np.cos(k/denominator)
 return P

P = getPositionEncoding(seq_len=4, d=4, n=100)

print(P)

Coding the Positional Encoding Matrix from Scratch

38

1
2
3
4

[[0. 1. 0. 1.]
[0.84147098 0.54030231 0.09983342 0.99500417]
[0.90929743 -0.41614684 0.19866933 0.98006658]
[0.14112001 -0.9899925 0.29552021 0.95533649]]

38

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Positional Embeddings

39

39

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Week 7.6 – The Task Specific Head

SIT330-770: Natural
Language Processing

40

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

40

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• The Language Modeling Head is an additional neural circuitry integrated
with the basic transformer architecture.

• It enables specific tasks such as language modeling by enhancing the
transformer's capabilities.
• Given a context of words, a Language Model assigns a probability to each

possible next word
o Calculating the probability of the next word “fish” given the context “Thanks for all

the”: P(fish|Thanks for all the)

The Language Modeling Head

41

41

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

The Language Modeling Head

42

42

4/3/25

8

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

The Classification Head

43

Layer
d x 1

Sigmoid function

43

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Week 7.7 – BERT: Bidirectional
Encoder Representations from
Transformers

SIT330-770: Natural
Language Processing

44

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

44

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• The focus of bidirectional encoders is on computing contextualized representations of the tokens in an

input sequence that are generally useful across a range of downstream applications

Bidirectional Transformer Encoders

45

45

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Transformers is an Encoder-Decoder architecture

o A transformer uses Encoder stack to model input, and

uses Decoder stack to model output (using input

information from encoder side).

• BERT

o If we are only interested in training a language model for

the input for some other tasks, then we do not need the

Decoder of the transformer, that gives us BERT.

BERT architecture

46

46

• Two models with different sizes were investigated
o BERTBASE : L=12, H=768, A=12, Total Parameters=110M

o BERTLARGE: L=24, H=1024, A=16, Total Parameters=340M
o L: number of layers (Transformer blocks), H: the hidden size, A:

the number of self-attention heads.

o Cased and uncased versions.

o Multiple-languages.

o Also available: BERTTiny , BERTMini , BERTSmall, BERTMedium

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Model architecture

47

47

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

BERT in Action

48

48

4/3/25

9

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Token Embeddings: Use pretrained WordPiece embeddings.

• Segment Embeddings (Optional): Added sentence embedding to every tokens of each sentence.

• Position Embeddings: Use learned Position Embeddings.

• Use [CLS] for the classification tasks.

• Separate sentences by using a special token [SEP].

Input Representation

49

49

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• BERT is pre-trained è Vocabulary is fixed

o The vocabulary contains 30,522 tokens.

o How to deal with unknown words?

• Break down unknown words into subwords:

o Using the wordpiece model.

• A subword exists for every character.

o 2 types of subwords

o All subwords start with “##”…

o Except for the first subword in a word

BERT’s Vocabulary

50

embedding

em ##bed ##ding

kroxldyphivc

k ##ro ##x ##yp ##ro ##x##ld

50

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Differences in pre-training model architectures: BERT, OpenAI
GPT, and ELMo

51

• GPT is built using transformer decoder blocks. BERT, on

the other hand, uses transformer encoder blocks.

• GPT is auto-regressive in nature. BERT is not.

o In losing auto-regression, BERT gained the ability to

incorporate the context on both sides of a word to gain

better results.

51

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Week 7.8 – BERT pre-training

SIT330-770: Natural
Language Processing

52

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

52

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Pre-trained models are ML models that have been previously trained on a large dataset,

typically on a general task
• These models can significantly reduce the computational cost and time required to

develop ML applications by leveraging learned features and weights.
o Speeds Up Development
o By using m odels that are already trained, developers can focus on fine-tuning rather than starting from scratch.

o Improves Performance
o Pre-trained m odels often bring high levels of accuracy and efficiency, especially on com plex tasks that require learning

from large am ounts of data.

o Resource Efficiency
o Saves resources by reducing the need for extensive training data and com putational pow er.

Pre-trained Models

53

53

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• The same architectures are used in both pre-training and fine-tuning

• [CLS] is a special symbol added in front of every input example, and [SEP]is a special separator token

• Pre-training: two tasks are considered
o Masked LM: mask some percentage of the input tokens at random, and then predict those masked tokens Mask 15% of all WordPiece tokens in each sequence

at random
o Next Sentence Prediction: understanding the relationship between two sentence (50% of positive pairs) Used BooksCorpus (800M words) and Wikipedia

(2,500M words)

Pre-training and Fine-tuning

54

54

4/3/25

10

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• The original approach to training bidirectional encoders is called Masked Language Modeling

(MLM)

o MLM uses unannotated text from a large corpus

o Model is presented with a series of sentences from the training corpus, where a random sample of tokens

from each training sequence is selected for use in the learning task. Once chosen, a token is used in one of

three ways:

o It is replaced with the unique vocabulary token [MASK]

o It is replaced with another token from the vocabulary, randomly sampled based on token unigram probabilities

o It is left unchanged

• In BERT, 15% of the input tokens in a training sequence are sampled for learning

o Of these, 80% are replaced with [MASK], 10% are replaced with randomly selected tokens, and the remaining

10% are left unchanged

Pre-training
Task#1: Masked Language Model (MLM)

55

55

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• The MLM training objective is to predict the original inputs for each of the masked tokens

using a bidirectional encoder of the kind described in the last section
o The cross-entropy loss from these predictions drives the training process for all the parameters in the

model

o Note that all the input tokens play a role in the self-attention process, but only the sampled tokens are

used for learning

• Input:
o Original input sequence is first tokenized using a subword model

o The sampled items which drive the learning process are chosen from among the set of tokenized inputs

o Word embeddings for all the tokens in the input are retrieved from the word embedding matrix and then

combined with positional embeddings to form the input to the transformer

Pre-training
Task#1: Masked Language Model (MLM)

56

56

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Pre-training
Task#1: Masked Language Model (MLM)

57

57

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• An important class of applications involves determining the relationship between pairs of

sentences
o paraphrase detection (detecting if two sentences have similar meanings)
o entailment (detecting if the meanings of two sentences entail or contradict each other)

o discourse coherence (deciding if two neighboring sentences form a coherent discourse)

• To capture the kind of knowledge required for applications such as these, BERT

introduced a second learning objective called Next Sentence Prediction (NSP)
• Training: The model is presented with pairs of sentences and is asked to predict whether

each pair consists of an actual pair of adjacent sentences from the training corpus or a
pair of unrelated sentences

Pre-training
Task#2: Next Sentence Prediction (NSP)

58

58

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• In BERT, 50% of the training pairs consisted of positive pairs, and in the other 50%

the second sentence of a pair was randomly selected from elsewhere in the corpus
o The NSP loss is based on how well the model can distinguish true pairs from random pairs

• BERT introduces two new tokens to the input representation
o After tokenizing the input with the subword model, the token [CLS] is prepended to the input

sentence pair, and the token [SEP] is placed between the sentences and after the final token of

the second sentence

o During training, the output vector from the final layer associated with the [CLS] token

represents the next sentence prediction

Pre-training
Task#2: Next Sentence Prediction (NSP)

59

59

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Pre-training
Task#2: Next Sentence Prediction (NSP)

60

60

4/3/25

11

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Training data: BooksCorpus (800M words) + English Wikipedia (2.5B words).

• To generate each training input sequences: sample two spans of text (A and

B) from the corpus.

o The combined length is ≤ 500 tokens.

o 50% B is the actual next sentence that follows A and 50% of the time it is a random

sentence from the corpus.

• The training loss is the sum of the mean masked LM likelihood and the mean

next sentence prediction likelihood.

Pre-training procedure

61

61

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Under the Hood

62

62

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Week 7.9 – BERT fine-tuning

SIT330-770: Natural
Language Processing

63

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

63

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• For sequence-level classification task

o Obtain the representation of the input sequence by

using the final hidden state (hidden state at the

position of the special token [CLS]) 𝐶 ∈ 𝑅,

o Just add a classification layer and use softmax to

calculate label probabilities. Parameters 𝑊 ∈ 𝑅$×,

P = softmax(𝐶𝑊-)

Fine-tuning procedure 1: Classification

64

64

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• For sentence pair classification task

o Sentences are separated with a a special token [SEP]

o Obtain the representation of the input sequence by

using the final hidden state (hidden state at the position

of the special token [CLS]) 𝐶 ∈ 𝑅!

o Just add a classification layer and use softmax to

calculate label probabilities. Parameters 𝑊 ∈ 𝑅"×!

P = softmax(𝐶𝑊 $)

Fine-tuning procedure 2: Sentence Pair Classification

65

65

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Feed the final hidden representation 𝑻𝒊 ∈ 𝑹𝑯 for each

token 𝒊 into a classification layer for the tagset.

• To make the task compatible with WordPiece

tokenization
o Predict the tag for the first sub-token of a word

o No prediction is made for X

Fine-tuning procedure 3: Named Entity Recognition

66

Jim Hen ##son was a puppet #er
I-PER I-PER X 0 0 0 X

66

4/3/25

12

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Input Question:

Where do water droplets collide with ice crystals to form

precipitation?

• Input Paragraph:

.... Precipitation forms as smaller dropletscoalesce via collision

with other rain dropsor ice crystals within a cloud. ...

• Output Answer:

within a cloud

Fine-tuning procedure 4: Query Answering 1/2

67

67

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Represent the input question and paragraph as a single packed

sequence.
o The question uses the A em bedding and the paragraph uses the B

em bedding.

• New parameters to be learned in fine-tuning are start vector

S ∈ 𝑹𝑯 and end vector 𝑬 ∈ 𝑹𝑯 .

• Calculate the probability of word & being the start of the

answer span:

𝑷𝑺𝒕𝒂𝒓𝒕 = 𝑺𝒐𝒇𝒕𝒎𝒂𝒙(𝑺𝑻𝑻) and 𝑷𝒆𝒏𝒅 = 𝑺𝒐𝒇𝒕𝒎𝒂𝒙(𝑬𝑻𝑻)

• The training objective is the log-likelihood the correct and end

positions.

Fine-tuning procedure 4: Query Answering 2/2

68

68

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Week 7.10 – BERT Performance

SIT330-770: Natural
Language Processing

69

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

69

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• GLUE (General Language Understanding Evaluation) benchmark
o Distribute canonical Train, Dev and Test splits

o Labels for Test set are not provided

• Datasets in GLUE:
o M N LI: M ulti-Genre N atural Language Inference

o Q Q P: Q uora Q uestion Pairs

o Q N LI: Q uestion N atural Language Inference

o SST-2: Stanford Sentim ent Treebank

o CoLA: The corpus of Linguistic Acceptability

o STS-B: The Sem antic Textual Sim ilarity Benchm ark

o M RPC: M icrosoft Research Paraphrase Corpus

o RTE: Recognizing Textual Entailm ent

o W N LI: W inograd N LI

Experiments

70

70

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

GLUE Results

71

71

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

SQuAD: The Stanford Question Answering Dataset

72

72

4/3/25

13

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• The Situations with Adversarial Generations (SWAG)

On stage, a woman takes a seat at the piano.

She …

a) sits on a bench as her sister plays with the

doll.

b) smiles with someone as the music plays.

c) is in the crowd, watching the dancers.

d) nervously sets her fingers on the keys.

• The only task-specific parameters is a vector V ∈ 𝑹𝑯

SWAG

73

• The probability distribution is the softmax over the four choices

73

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Unsupervised pre-training (pre-training language model) is increasingly

adopted in many NLP tasks.

o Google Search is applying BERT models for search queries for over 70 languages.

• Major contribution of the paper is to propose a deep bidirectional

architecture from Transformer.

o Advance state-of-the-art for many important NLP tasks.

• Cannot do everything in NLP!

Conclusions

74

74

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Week 7.11 – Other Models Based
on Transformers

SIT330-770: Natural
Language Processing

75

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

75

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• A modification of the pretrained

BERT network that use Siamese

network structures to derive

semantically meaningful sentence

embeddings that can be compared

using cosine-similarity

o https://www.sbert.net/

Sentence-BERT: Sentence Embeddings using Siamese BERT-
Networks

76

76

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• RoBERTa: Robustly Optimized BERT Approach
o Facebook AI research team

o They used 160 GB of text instead of the 16 GB dataset

originally used to train BERT

o Increased the num ber of iterations from 100K to 300K

and then further to 500K

o Dynam ically changing the m asking pattern applied to

the training data

o Rem oving the next sequence prediction objective

from the training procedure

• ALBERT, XLNET, ColBERT

BERT-based Models

77

77

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• GPT (Generative Pre-trained Transformer) is a series of language generation models developed

by OpenAI. These models are based on the Transformer architecture (2018)

• GPT-2 (Generative Pre-trained Transformer 2) was the second model in the GPT series, released in

2019. It was trained on a large corpus of internet text and was designed for language generation

tasks such as question answering, and text summarization

• GPT-3 (Generative Pre-trained Transformer 3) Released in 2020, with over 175 billion parameters,

and was trained on a much larger and diverse dataset, including web pages, books, and scientific

articles

• GPT-4 (Generative Pre-trained Transformer 4) Released in 2023, a multimodal model which can

accept image and text inputs and produce text outputs

Generative Pre-trained Transformer (GPT)

78

78

4/3/25

14

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Zero-shot, One-shot and Few-shot, Contrasted with Traditional
Fine-tuning

79

79

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Text-to-Text Transfer Transformer (T5)

80

• A diagram of the text-to-text framework (T5)

• Every task, including translation, question answering, and classification, is cast as feeding
T5 model text as input and training it to generate some target text

80

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Week 7.12 – HuggingFace

SIT330-770: Natural
Language Processing

81

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

81

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• HuggingFace has a course on NLP: https://huggingface.co/course/chapter0/1?fw=pt 35

https://huggingface.co/

HuggingFace

82

82

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• There is a wide range of examples provided, here are some useful links:
o Notebooks:
o https://huggingface.co/transformers/v3.0.2/notebooks.html

o https://github.com/huggingface/transformers/tree/main/notebooks

o Models:
o https://huggingface.co/models

o Course:
o https://huggingface.co/course/chapter0/1?fw=pt

Documentations and Tutorials

83

83

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Use pip for the installation, which is the package manager for Python. In notebooks, you

can run system commands by preceding them with the ! character, so you can install the

🤗 Transformers library as follows:

!pip install transformers
• You can make sure the package was correctly installed by importing it within your Python

runtime:

import transformers

Getting Started

84

84

https://huggingface.co/transformers/v3.0.2/notebooks.html

4/3/25

15

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• The pipelines are a great and easy way to use models for inference

• These pipelines are objects that abstract most of the complex code from the library,

offering a simple API dedicated to several tasks, including Named Entity Recognition,

Masked Language Modeling, Sentiment Analysis, Feature Extraction and Question

Answering

Pipelines

85

85

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Example (1): Sentiment Analysis

86

86

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Example (2): Question Answering

87

87

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

88

88

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Today we learned about:
o Transformers

o Attention is All you need

o BERT

Summary

89

89

